

STM32-P407 development board USER'S MANUAL

Initial release, February 2012 Designed by OLIMEX Ltd, 2011

All boards produced by Olimex LTD are ROHS compliant

Disclaimer:

© 2012 Olimex Ltd. Olimex[®], logo and combinations thereof, are registered trademarks of Olimex Ltd. Other terms and product names may be trademarks of others.

The information in this document is provided in connection with Olimex products. No license, express or implied or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Olimex products.

Neither the whole nor any part of the information contained in or the product described in this document may be adapted or reproduced in any material from except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous development and improvements. All particulars of the product and its use contained in this document are given by OLIMEX in good faith. However all warranties implied or expressed including but not limited to implied warranties of merchantability or fitness for purpose are excluded. This document is intended only to assist the reader in the use of the product. OLIMEX Ltd. shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission in such information or any incorrect use of the product.

Thank you for purchasing STM32-P407 development board assembled by OLIMEX LTD

Table of Contents

CHAPTER 1	5
OVERVIEW	5
1. Introduction to the chapter	5
1.1 Features	5
1.2 Organization	6
CHAPTER 2	7
SETTING UP THE STM32-P407 BOARD	7
2. Introduction to the chapter	7
2.1 Electrostatic warning	7
2.2 Requirements	7
2.3 Powering the board	8
2.4 Prebuilt software	8
CHAPTER 3	9
STM32-P407 BOARD DESCRIPTION	9
3. Introduction to the chapter	9
3.1 Layout (top view)	9
3.2 Layout (bottom view)	10
CHADTER <i>Λ</i>	11
CIIAI ILA 4	••••••
THE STM32F407ZGT6 MICROCONTROLLER	
THE STM32F407ZGT6 MICROCONTROLLER	
THE STM32F407ZGT6 MICROCONTROLLER 4. Introduction to the chapter 4.1 The microcontroller	
THE STM32F407ZGT6 MICROCONTROLLER 4. Introduction to the chapter 4.1 The microcontroller CONTROL CIRCUITY	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter.	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset.	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock.	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock. CHAPTER 6.	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock. CHAPTER 6. HARDWARE.	11 11 11 11
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock. CHAPTER 6. HARDWARE. 6. Introduction to the chapter.	
THE STM32F407ZGT6 MICROCONTROLLER	
THE STM32F407ZGT6 MICROCONTROLLER 4. Introduction to the chapter	
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock. CHAPTER 6. HARDWARE. 6. Introduction to the chapter. 6.1 JTAG connector. 6.2 UEXT. 6.3 Pads on the proto area.	11 11 11 11 11 13 13 13 13 13
THE STM32F407ZGT6 MICROCONTROLLER4. Introduction to the chapter4.1 The microcontroller	
THE STM32F407ZGT6 MICROCONTROLLER4. Introduction to the chapter4.1 The microcontroller 4.1 The microcontroller CONTROL CIRCUITY5. Introduction to the chapter5.1 Reset5.2 Clock 5.2 Clock CHAPTER 6 HARDWARE6. Introduction to the chapter6.1 JTAG connector6.2 UEXT 6.3 Pads on the proto area6.3 Pads on the proto area6.5 USB HOST	11 11 11 11 11 13 13 13 13 13
THE STM32F407ZGT6 MICROCONTROLLER. 4. Introduction to the chapter. 4.1 The microcontroller. CONTROL CIRCUITY. 5. Introduction to the chapter. 5.1 Reset. 5.2 Clock. CHAPTER 6. HARDWARE. 6. Introduction to the chapter. 6.1 JTAG connector. 6.2 UEXT. 6.3 Pads on the proto area. 6.4 USB_OTG. 6.5 USB HOST. 6.6 LAN connector.	11 11 11 11 11 13 13 13 13 13

6.8 Headphones connector	19
6.9 SD/MMC slot	19
6.10 RS232_1	20
6.11 RS232_2	20
6.12 CAN connector	21
6.13 Battery connector	22
6.14 Jumper description	22
6.15 LCD Display with backlight	25
6.16 VGA Color Camera	25
6.17 Additional hardware components	26
CHAPTER 7	27
MEMORV	
7. Introduction to the chapter	
7.1 Memory map	
CHAPTER 8	
SCHEMATICS	29
8. Introduction to the chapter	
8.1 Eagle schematic	29
8.2 Physical dimensions	31
CHAPTER 9	32
REVISION HISTORY	
9. Introduction to the chapter	
9.1 Document revision	32
9.2 Web page of your device	32

OVERVIEW

1. Introduction to the chapter

Thank you for choosing the STM32-P407 development board from Olimex! This document provides a User's Guide for the Olimex STM32-P407 development board. As an overview, this chapter gives the scope of this document and lists the board's features. The document's organization is then detailed.

The STM32-P407 development board enables code development of applications running on the M4 CORTEX STM32F407ZGT6 microcontroller, manufactured by STMicroelectronics.

1.1 Features

- STM32F407ZGT6 Cortex-M4 210DMIPS, 1MB Flash, 196KB RAM, 3×12-bit 2.4 MSPS A/D, 2×12-bit D/A converters, USB OTG HS and USB OTG HS, Ethernet, 14 timers, 3 SPI, 3 I2C, Ethernet, 2 CANs, 3 12 bit ADCs, 2 12 bit DACs, 114 GPIOs, Camera interface
- JTAG connector with ARM 2x10 pin layout for programming/debugging
- 512 KB fast external SRAM on board
- 4 Status LEDs
- Stereo Audio Codec CS4344
- CAN driver
- Temperature sensor
- Trimmer potentiometer
- Joystick for navigation
- 6610 LCD color 128x128 pixel TFT display
- SAMSUNG E700 VGA camera 640x480 color
- Tamper and Wakeup buttons
- 2 RS232 drivers and connectors
- 25 Mhz quartz crystal
- USB_OTG
- USB HOST
- 100 Mbit Ethernet
- Mini SD/MMC card connector

- UEXT connector
- Power Jack
- RESET button and circuit
- Power-on led
- 3V battery connector
- Extension port connectors for many of microcontrollers pins
- PCB: FR-4, 1.5 mm (0,062"), soldermask, silkscreen component print
- Dimensions: 160x116 mm (6.3x4.6")

1.2 Organization

Each section in this document covers a separate topic, organized as follow:

- Chapter 1 is an overview of the board usage and features
- Chapter 2 provides a guide for quickly setting up the board
- Chapter 3 contains the general board diagram and layout
- Chapter 4 describes the component that is the heart of the board: the STM32F407ZGT6 microcontroller
- Chapter 5 is an explanation of the control circuitry associated with the microcontroller to reset. Also shows the clocks on the board
- Chapter 6 covers the connector pinout, peripherals and jumper description
- Chapter 7 shows the memory map
- Chapter 8 provides the schematics
- Chapter 9 contains the revision history

SETTING UP THE STM32-P407 BOARD

2. Introduction to the chapter

This section helps you set up the STM32-P407 development board for the first time. Please consider first the electrostatic warning to avoid damaging the board, then discover the hardware and software required to operate the board.

The procedure to power up the board is given, and a description of the default board behavior is detailed.

2.1 Electrostatic warning

STM32-P407 is shipped in a protective anti-static package. The board must not be exposed to high electrostatic potentials. A grounding strap or similar protective device should be worn when handling the board. Avoid touching the component pins or any other metallic element.

2.2 Requirements

In order to set up the STM32-P407, the following items are required:

- 5 Vdc Power supply (or JTAG or SWD, or 5V TRACE, or 5V CAN, or 5V_USB, depending on PWR_SEL jumper position)

- SWD interface programmer

Note: additionally, the board can be programmed via JTAG interface but there are signals multiplexed with the LCD and the audio, so if using JTAG interface for programming you might need to implement a software mechanism to stop them or you might not be able to reprogram again.

You may use a pair of the following devices for this purpose:

- Any of Olimex's ARM-JTAG programmer/debuuger (keeping in mind the note above)

- Any of Olimex's ARM-JTAG programmer/debugger + ARM-JTAG-SWD + Rowley CrossWorks

Also, a host-based software toolchain is required in order to program/debug the STM32-P407 board. There are also a number of ready IDEs available like IAR Embedded Workbench, Rowley CrossWorks, etc.

At the moment of writing this guide our ARM programmers/debuggers equipped with an ARM-

JTAG-SWD work fine (out-of-the-box) with Rowley CrossWorks.

2.3 Powering the board

Provide +5 V DC to the board's power jack, OR +5 V via the JTAG or TRACE connector (before providing the power set the PWR_SEL jumper in the correct position)

On powering the board the PWR LED, the SATA4 LED and the display should turn on. The SATA1, SATA2 and SATA3 LEDs must start blinking consecutively.

If measuring the current consumption it should be around 30 mA.

2.4 Prebuilt software

On arrival the board has a basic demo installed which features test of the LEDs, the LCD, the joystick, the camera.

IMPORTANT: If you have only a programmer with JTAG interface and you need to turn off the peripherals using the JTAG signals press WKUP button! Pressing WKUP button will turn of those modules and will allow JTAG reprogramming.

STM32-P407 BOARD DESCRIPTION

3. Introduction to the chapter

Here you get acquainted with the main parts of the board. Note the names used on the board differ from the names used to describe them. For the actual names check the STM32-P407 board itself.

3.1 Layout (top view)

3.2 Layout (bottom view)

THE STM32F407ZGT6 MICROCONTROLLER

4. Introduction to the chapter

In this chapter is located the information about the heart of STM32-P407 – its microcontroller. The information is a modified version of the datasheet provided by its manufacturers.

4.1 The microcontroller

•Core: ARM 32-bit CortexTM-M4 CPU with FPU, Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

•Memories

- •1 Mbyte of Flash memory
- •192+4 Kbytes of SRAM including 64-Kbyte of CCM (core coupled memory) data RAM

•Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories

- •LCD parallel interface, 8080/6800 modes
- •Clock, reset and supply management
 - •1.8 V to 3.6 V application supply and I/Os
 - •POR, PDR, PVD and BOR
 - •4-to-26 MHz crystal oscillator
 - •Internal 16 MHz factory-trimmed RC (1% accuracy)
 - •32 kHz oscillator for RTC with calibration
 - •Internal 32 kHz RC with calibration
 - •Sleep, Stop and Standby modes
 - •VBATsupply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM
- •3×12-bit, 2.4 MSPS A/D converters: 24 channels and 7.2 MSPS in triple interleaved mode
- •2×12-bit D/A converters
- •General-purpose DMA: 16-stream DMA controller with FIFOs and burst support

•Up to 17 timers: up to twelve 16-bit and two 32-bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input

•Debug mode

•Serial wire debug (SWD) & JTAG interfaces

•Cortex-M4 Embedded Trace MacrocellTM

•Up to 114 I/O ports with interrupt capability

•Up to 15 communication interfaces

•3 × I2C interfaces (SMBus/PMBus)

•4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control)

•3 SPIs (37.5 Mbits/s), 2 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock

•2 × CAN interfaces (2.0B Active)

•SDIO interface

•Advanced connectivity

•USB 2.0 full-speed device/host/OTG controller with on-chip PHY

•USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI

•10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII

•8- to 14-bit parallel camera interface up to 54 Mbytes/s

•True random number generator

•CRC calculation unit

•96-bit unique ID

•RTC: subsecond accuracy, hardware calendar

For comprehensive information on the microcontroller visit the Microchip's web page for a datasheet.

At the moment of writing the microcontroller datasheet can be found at the following link: <u>http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DAT_ASHEET/DM00037051.pdf</u>

If the Cortex M4 processor listed above seems like an overkill we have the same board offered with Cortex M3 one – STM32F207ZET6. The name of the board is STM32-P207. The table of comparison can be found below:

	STM32F207ZET6	STM32F407ZGT6
Maximum speed	120Mhz	168Mhz
Program memory	512KB	1024KB
Ram memory	132KB	192KB

CHAPTER 5 CONTROL CIRCUITY

5. Introduction to the chapter

Here you can find information about reset circuit and quartz crystal locations.

5.1 Reset

STM32-P407 reset circuit includes R65 (10 K Ω), R66(560 Ω), C45(100 nF), STM32F407ZGT6 pin 25 (NRST) and a RESET button. The RESET is also connected to the proto area.

5.2 Clock

25 MHz quartz crystal Q1 is connected to pins 23 and 24 of the processor.

Real time clock (RTC) Q2 is found at pins 8 and 9 of the processor.

HARDWARE

6. Introduction to the chapter

In this chapter are presented the connectors that can be found on the board all together with their pinout. Proto area is shown. Jumpers functions are described. Notes and info on specific peripherals are presented. Notes regarding the interfaces are given.

6.1 JTAG connector

The 20 pin JTAG connector provides the interface for JTAG or/and SWD/TRACE programming/debugging. It is advisable to use SWD/TRACE interface programmers.

JTAG/SWD interface			
Pin #	Signal Name	Pin #	Signal Name
1	+3.3V	11	+3.3 V
2	+3.3V	12	GND
3	TRST/SPI1_MISO	13	TDO/I2S3_CK
4	GND	14	GND
5	PGCTDI/I2S3_WS	15	RST
6	GND	16	GND
7	TMS	17	+5V_J-LINK
8	GND	18	GND
9	ТСК	19	+5V_J-LINK
10	GND	20	GND

TRACE interface			
Pin #	Signal Name	Pin #	Signal Name
1	+3.3V	11	+5V_TRACE
2	TMS	12	TEMP_ALERT
3	GND	13	+5V_TRACE
4	тск	14	USB_HS_VBUSON
5	GND	15	GND
6	TDO/I2S3_CK	16	DCMI_D4
7	Not connected	17	GND
8	TDI/I2S3_WS	18	DCMI_D6
9	GND	19	GND
10	RST	20	DCMI_D7

6.2 UEXT

STM32-P407 board has UEXT connector and can interface Olimex's UEXT modules. For more information on UEXT please visit:

http://www.olimex.com/dev/OTHER/UEXT.pdf

Pin #	Signal Name
1	+3.3V
2	GND
3	DCMI_D0/USART6_TX
4	USART6_RX

5	SOFTWARE SCL
6	SOFTWARE SDA
7	SD_D3/USART3_RX/SPI3_MISO
8	SD_CLK/SPI3_MOSI
9	SD_D2/USART3_TX/SPI3_SCK
10	STAT3/CS_UEXT

6.3 Pads on the proto area

For your convenience the pads are named individually near each of them. Please take extra care about the numbering but consider that there might be offset.

PAD #	Signal Name	PAD#	Signal Name	
PA0	BUT WKUP	RST	RST	
PA4	DCMI_HSYNC	PG0	A10	
PA5	SPI1_SCK	PG1	A11	
PA6	DCMI_PIXCLK	PG2	A12	PA5 🕀 🗩 P61
PA8	MC01	PG3	A13	
PA9	OTG_FS_VBUS	PG4	A14	
PA10	DCMI_D1	PG5	A15	
PB0	LCD_BL	PG6	RIGHT(JOYSTICK)	
PB1	BUZ	PG9	USART6_RX	
PB2	CAM_ENB	PG10	SOFT_SCL	
PB5	I2S3_SD	PF15	А9	PB5 • PF15
PB9	CAN1_TX	PF14	A8	PB9 🖸 🖸 PF14
PB10	USB_FS_FAULT	PF13	Α7	PB10 D PF13
PB12	OTG_HS_ID	PF12	A6	PB12 P F12
PB13	OTG_HS_VBUS	PF11	CAM_RST	PB13 • • PF11

PC5	ETH_RMII_RXD1	PF10	ETH_RXER	
PC13	BUT TAMPER	PF9	SSTAT4/CAM_PWR	
PD6	LCD_CS	PF8	STAT3/CS_UEXT	
PE0	/BLE	PF7	STAT2/CAN_CTRL	
PE1	/BHE	PF6	STAT1	
PE2	TEMP_ALERT	PF5	А5	
PE3	USB_HS_VBUSON	PF4	A4	
PE4	DCMI_D4	PF3	А3	
PE5	DCMI_D6	PF2	A2	
PE6	DCMI_D7	PF1	A1	
PE7	D4	PF0	AØ	
PE8	D5	PE15	D12	
PE9	D6	PE14	D11	
PE10	D7	PE13	D10	
PE11	D8	PE12	D9	
+5V	+5V DC	VBAT	VBAT	
				AGND

6.4 USB_OTG

Pin #	Signal Name
1	+5V
2	D-
3	D+
4	OTG_HS_ID
5	GND

6.5 USB HOST

PIN#	SIGNAL NAME
1	+5 V
2	USB_HOST_D-
3	USB_HOST_D+
4	GND

6.6 LAN connector

PIN#	SIGNAL NAME
1	TX+
2	TX-
3	VDD
4	NOT CONNECTED
5	NOT CONNECTED
6	VDD
7	RX+
8	RX-

LED	Color	Usage
Right	Green	Link status
Left	Yellow	Activity status

6.7 PWR Jack

Pin #	Signal Name
1	Power Input
2	GND

6.8 Headphones connector

6.9 SD/MMC slot

Pin #	Signal Name
1	DAT2
2	DAT3/CS
3	CMD/DI
4	VDD
5	CLK/SCLK

6	VSS
7	DAT0/DO
8	DAT1

6.10 RS232_1

RS232_1 is located on USART6/SPI3 line. Check the jumper configuration.

Pin #	Signal Name
1	Not Connected
2	T1OUT
3	R1IN
4	Not Connected
5	GND
6	Not Connected
7	CTS
8	RTS
9	Not Connected

6.11 RS232_2

RS232_2 is located on USART3 (processor pins D13 – D14, A17 – A16)

Pin #	Signal Name
1	Not connected

2	T10UT
3	R1IN
4	Not connected
5	GND
6	Not connected
7	СТЅ
8	RTS
9	Not connected

6.12 CAN connector

Pin#	Signal name
1	Not connected
2	CANL
3	VSS
4	Not connected
5	VSS
6	GND
7	CANH
8	Not connected
9	+5V_CAN

6.13 Battery connector

Pin #	Signal Name
1	VBAT
2	GND

6.14 Jumper description

Most of the jumper configurations are printed with white print on the PCB for your convenience.

PWR_SEL

On the setting of this jumper depends the way we power the board. There is a table printed on the board with the positions. You can check the table below also. Position 1-2 is the one at the PWR connector side.

PWR_SEL		
1 - 2 +5V_EXT		
3 - 4	+5V_J-LINK	
5 - 6	+5V_CAN	
7 - 8	+5V_USB_OTG	
9 - 10	+5V_TRACE	

Default position is 3-4.

STAT1_E, STAT2_E, STAT3_E, STAT4_E

Those 4 jumpers control whether the LEDs are powered(closed) or not(open).

Default state is closed.

BOOT0_E

Connected to pin 138 (BOOT0/VPP), enables boot if closed.

Default state is open.

RST_E

Controls the RST on the RS232_1. If closed is present. Default state is not present.

Default state is open.

B1_1/B1_0, B0_1/B0_0

These jumpers should be moved together and control the camera being powered.

Default state is B1_0, B0_0 (camera powered).

3.3V_MCU_EN

When closed enables the power supply on the STM32F207ZET.

Default state is closed.

TX_BOOT_E

If closed separates USART6_TX and PC10.

Default state is open.

RX_BOOT_E

If closed separates USART6_RX and PC11.

Default state is open.

3.3V_E

Board's digital power supply is disabled if open. Enabled if closed.

Default state is open.

AGND_E

Analog GND is disabled if open. If closed Analog GND is enabled.

Default state is closed.

R-T

RST and TRST are separated if open. RST and TRST are connected if closed. Refer to the schematic near the JTAG connector for how this jumper influences the JTAG programming of the board.

<u>Default state is open.</u>

CAN_T

Can termination is disabled if open.

Default state is open.

6.15 LCD Display with backlight

replica of Nokia 6610 color display 128x128 pixels

6.16 VGA Color Camera

640x480 pixels (0.3 mega pixel) Samsung 700 camera + connector

6.17 Additional hardware components

The components below are mounted on STM32-P407 but are not discussed above. They are listed here for completeness:

Joystick

Temperature sensor

Audio out

Trimmer

Buzzer

Additional memory

2 buttons + RST button

4 status LEDs + PWR LED

MEMORY

7. Introduction to the chapter

On the next page you can find a memory map for this family of processors. It is strongly recommended to refer to the original datasheet released by STMicroelectronics for one of higher quality.

7.1 Memory map

SCHEMATICS

8. Introduction to the chapter

In this chapter are located the schematics describing logically and physically STM32-P407.

8.1 Eagle schematic

STM32-P407 schematic is visible for reference here. You can also find them on the web page for STM32-P407 at our site: <u>http://www.olimex.com/dev/stm32-P407.html</u>. They are located in HARDWARE section.

The EAGLE schematic is situated on the next page for quicker reference.

8.2 Physical dimensions

Note that all dimensions are in inches.

CHAPTER 9 REVISION HISTORY

9. Introduction to the chapter

In this chapter you will find the current and the previous version of the document you are reading. Also the web-page for your device is listed. Be sure to check it after a purchase for the latest available updates and examples.

9.1 Document revision

Revision	Changes	Modified Pages
Α	Initial Creation	All

9.2 Web page of your device

The web page you can visit for more info on your device is <u>http://www.olimex.com/dev/stm32-P407.html</u>. There you can find more info and some examples.

ORDER CODES:

STM32-P407 - completely assembled and tested

ARM-USB-TINY - for custom programming/debugging ARM-USB-TINY-H - for custom programming/debugging USB-MINI-CABLE - USBmini to USB-A cable ARM-JTAG-SWD – SWD adapter for our ARM-JTAG programmers

How to order?

You can order to us directly or by any of our distributors. **Check our webpage** <u>http://www.olimex.com/</u> for more info.